Search Articles
Journal:
all
Keyword:
linked open data
Total
—
27 articles
Short Note 10 February 2023
Simone Pettigrew and Leon Booth
2069 Views675 Downloads1 Citations
Article 18 August 2022
Mohammad Valipour, Helaleh Khoshkam, Sayed M. Bateni and Essam Heggy
Highlights of Sustainability
Volume 1 (2022), Issue 3, pp. 171–187
Volume 1 (2022), Issue 3, pp. 171–187
2522 Views864 Downloads3 Citations
Review 8 August 2022
Ambe J. Njoh, Ijang B. Ngyah-Etchutambe, Fri C. Soh-Agwetang, Pascar T. Tah, Mah O. Tarke and Fotoh J. Asah
Highlights of Sustainability
Volume 1 (2022), Issue 3, pp. 159–170
Volume 1 (2022), Issue 3, pp. 159–170
2363 Views1093 Downloads
Article 11 July 2022
Peter Jean-Paul, Tek Tjing Lie, Timothy N. Anderson and Brice Vallès
Highlights of Sustainability
Volume 1 (2022), Issue 3, pp. 134–158
Volume 1 (2022), Issue 3, pp. 134–158
2387 Views657 Downloads
Article 17 May 2022
Alfred Söderberg
Highlights of Sustainability
Volume 1 (2022), Issue 2, pp. 88–104
Volume 1 (2022), Issue 2, pp. 88–104
3708 Views1028 Downloads1 Citations
Article 28 March 2022
Reza Heydari, Mohammad Keshtidar, Haywantee Ramkissoon, Mahdi Esfahani and Ehsan Asadollahi
Highlights of Sustainability
Volume 1 (2022), Issue 2, pp. 41–53
Volume 1 (2022), Issue 2, pp. 41–53
3306 Views1177 Downloads3 Citations
Review 8 March 2022
Hwang Yi and Abhishek Mehrotra
Highlights of Sustainability
Volume 1 (2022), Issue 1, pp. 12–40
Volume 1 (2022), Issue 1, pp. 12–40
2256 Views939 Downloads1 Citations
Review 8 March 2022
Hwang Yi and Abhishek Mehrotra
Sustainable buildings tend to maximize power and information rather than efficiency. The multidimensional concepts and tools provided by systems ecology and thermodynamics aid the understanding of building performance and sustainability as part of the global and
Sustainable buildings tend to maximize power and information rather than efficiency. The multidimensional concepts and tools provided by systems ecology and thermodynamics aid the understanding of building performance and sustainability as part of the global and complex thermodynamic phenomena in living systems—energy is not concentrated, but it flows, increasing the flow rate of useful energy. From such an extended macroscopic perspective, this paper addresses holistic eco-systemic criteria of building performance evaluation, focusing on emergy (spelled with an “m”) and information—the two critical indices of extensive and intensive analysis. Emergy aggregates the utmost and upstream energetic impacts, whereas information evaluates the structural pattern of the energy-flow distribution. These indices are theoretically correlated under the principles of ecological energy transformation and are often practically compatible. To clarify the definitions and appropriate scientific contexts of the new indices for environmental building studies, we review information theory, ecological theorems, and a few pioneering studies. Emergy and information have a great potential for advanced environmental building analysis, but building-scale implementation of emergy, information, and system principles remains a scientific challenge. The findings call for further research into the improvement of building-specific emergy/information data and reliable evidence of the analogy between building and open living systems.
or
Access Full Article
Highlights of Sustainability
Volume 1 (2022), Issue 1, pp. 12–40
Volume 1 (2022), Issue 1, pp. 12–40
2256 Views939 Downloads1 Citations
Volume 2 (2023), Issue 1, pp. 1–9