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Abstract This study addresses the critical challenge of assessing railway track irregularities using 
advanced machine learning techniques, specifically convolutional neural networks (CNNs) and 
conformal prediction. Leveraging high-fidelity sensor data from high-speed trains, we propose a 
novel CNN model that significantly outperforms state-of-the-art results in predicting track irreg-
ularities. Our CNN architecture, optimized through extensive hyperparameter tuning, comprises 
multiple convolutional layers with batch normalization, Exponential Linear Unit (ELU) activa-
tion functions, and dropout regularization. This design enables the model to capture complex 
spatial and temporal dependencies in the train’s dynamic responses, translating them into accu-
rate predictions of track irregularities. The model achieves a mean unsigned error of 0.31 mm 
on the test set, surpassing the previous state-of-the-art performance and approaching industry-
standard benchmarks for track measurement accuracy. This level of precision is crucial for the 
early detection of track defects that could compromise safety and ride quality. To quantify un-
certainty in the model’s predictions, we implement conformal prediction techniques, specifically 
the CV+ and CV-minmax methods. These approaches provide prediction intervals with high 
reliability, achieving a 97.18% coverage rate for the CV-minmax method. The resulting predic-
tion intervals have an average width of 2.33 mm, offering a balance between precision and con-
fidence in the model’s outputs. Notably, our model exhibits impressive computational efficiency, 
capable of processing over 2000 kilometers of track data per hour. This speed makes it suitable 
for real-time applications in continuous monitoring systems, potentially revolutionizing the ap-
proach to railway maintenance. The integration of CNNs with conformal prediction represents 
a significant advancement in the field of predictive maintenance for railway infrastructure. By 
providing both accurate predictions and well-calibrated uncertainty estimates, our approach en-
ables more informed decision-making in track maintenance planning and safety assessments. 

Keywords railway track integrity; convolutional neural networks; conformal prediction; 
predictive maintenance; sensor data analysis; machine learning; uncertainty quantification 

 
 

1. Introduction 
In the evolving landscape of global transportation, railways continue to play a pivotal role, 

offering a unique blend of efficiency, reliability, and environmental sustainability. As rail net-
works expand and train speeds increase to meet growing passenger expectations, the imperatives 
of track safety and maintenance have ascended to the forefront of railway operations. The safety, 
comfort, and operational efficiency of rail services are directly impacted by the integrity of rail-
way tracks, which can develop irregularities caused by wear, environmental factors, and external 
forces. 

The challenge of maintaining railway track quality is multifaceted. Track irregularities, if left 
unchecked, can lead to a cascade of issues: increased wear on both track and rolling stock, re-
duced passenger comfort, and in extreme cases, safety risks. Traditional track inspection meth-
odologies, while precise, grapple with significant limitations. High operational costs, limited cov-
erage, and considerable latency between inspections hamper their effectiveness in an era de-
manding near-real-time monitoring and predictive maintenance. 

 
This paper is an extended version of the work presented at ICANN 2024 [1]. 
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The advent of advanced sensor technology presents a transformative opportunity: the poten-
tial to continuously monitor track conditions using data collected from in-service railway vehicles. 
By equipping regular passenger or freight trains with sophisticated sensors, we can potentially 
gather vast amounts of data about track conditions during normal operations. This approach 
promises more frequent and comprehensive track assessments without the need for dedicated 
inspection vehicles or service interruptions. 

However, the sheer volume and complexity of the data generated by such a system pose sig-
nificant challenges. How can we efficiently process this data to extract meaningful information 
about track conditions? How can we ensure that our assessments are accurate and reliable 
enough to inform critical maintenance decisions? And how can we quantify the uncertainty in 
our predictions to support risk-based decision-making? 

Recent advances in machine learning, particularly in deep learning, offer promising solutions 
to these challenges. Convolutional Neural Networks (CNNs), which have demonstrated remark-
able success in processing complex, high-dimensional data in fields such as computer vision, 
could potentially be adapted to analyze the intricate patterns in vehicle dynamics data that indi-
cate track irregularities. 

Moreover, the emerging field of conformal prediction provides a framework for quantifying 
the uncertainty of machine learning predictions. This is crucial in the context of railway mainte-
nance, where understanding the confidence level of track condition assessments is vital for prior-
itizing maintenance activities and managing safety risks. 

This study aims to explore the potential of combining CNNs and conformal prediction tech-
niques to create a robust, efficient, and uncertainty-aware system for detecting railway track ir-
regularities using in-service vehicle data. Our goal is to develop a methodology that can: 

⁃ Accurately detect and quantify track irregularities from vehicle dynamics data. 
⁃ Process this data efficiently enough to support real-time or near-real-time monitoring. 
⁃ Provide well-calibrated uncertainty estimates to support risk-based decision-making. 

By addressing these challenges, we hope to contribute to the development of more proactive, 
data-driven approaches to railway maintenance. Such approaches have the potential to enhance 
safety, improve operational efficiency, and reduce maintenance costs across railway networks 
worldwide. 

The remainder of this paper is structured as follows. The following subsections establish the 
benchmark levels and present related work. Section 2 gives an introduction to vehicle modeling 
and a formal setup of the problem tackled in this project. Section 3 provides a detailed overview 
of our methodology, including data collection, preprocessing, CNN architecture, and conformal 
prediction techniques. Section 4 presents our results and analysis. Section 5 discusses the impli-
cations of our findings and potential avenues for future research. Including conclusions of the 
paper with a summary of our key findings and their significance for the field of railway mainte-
nance and safety. 

1.1. Benchmark Levels 
The EN:13848-5 standard is used to establish a benchmark [2]. This document contains op-

erating limits for the track measurements at various speeds. The strictest limits are deviations of 
1 mm for 100-meter running means and standard deviations. Based on this, a 0.1 mm benchmark 
will be chosen for the mean unsigned error, ME. Furthermore, to ensure that the predictions can 
be safely used to assess operating limits, further benchmarks are established to say that the max-
imum of unsigned errors is below 0.5 mm. 

Since the limit values in EN:13848-5 are only specified to the nearest millimeter, a maximum 
unsigned error of less than 0.5 mm would imply that all running means are within 0.5 mm of the 
actual value [2]. 

Kawasaki & Youcef-Toumi [3] give error ranges that would accept maximum unsigned er-
rors of less than 4 mm and an ME of around 1 mm, while Hao et al. [4] set a benchmark of 0.25 
mm and 0.45 mm of the mean unsigned error in the wavebands [3 m, 42 m] and [42 m, 120 m], 
respectively. These are less strict than our benchmarks mentioned above. We, therefore, set ad-
ditional benchmarks of an ME of 0.35 mm (the mean of 0.25 mm and 0.45 mm) and a maximum 
unsigned error of 4 mm and call these the “satisfying” levels. 

https://www.hos.pub/
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1.2. Related Work 
This subsection will go over related work to this project. The selected papers are grouped into 

three categories. Firstly, Vehicle dynamics will look at papers focused on the motivation of con-
tinuous track measurements. Secondly, Classic methods will highlight papers that have attacked 
the problem using traditional signal processing methods. Thirdly, deep learning methods show 
some papers that have used deep learning methods, as in this paper, to solve the problem. 

1.2.1. Vehicle Dynamics 
Traditionally, the integrity assessment of railway infrastructure has relied heavily on periodic 

inspections using specialized measurement vehicles, a process that, while accurate, suffers from 
limitations such as high costs, limited coverage, and the potential for subjective error. Ravitharan 
[5] highlights the operational benefits of proactive maintenance strategies, advocating for con-
tinuously monitoring track conditions using in-service railway vehicles, a concept explored over 
the past two decades [3,6]. Lee et al. [7] underscore the direct correlation between vehicle dy-
namics and track conditions, laying the foundation for the use of vehicle dynamics as a means of 
assessing track quality. 

1.2.2. Classic Methods 
Prior works have mainly focused on classical mathematical analysis tools, such as Kalman 

filters, system identification techniques, digital and analog processing, and other signal processing 
methods [3,7–14]. These works have prioritized interpretable models over complex data-driven 
solutions which might have higher accuracy. These traditional methods often encounter mathe-
matical difficulties, such as the issue of double integration of accelerations to obtain positions, 
which complicates their application in real-world scenarios [6]. 

1.2.3. Deep Learning Methods 
Recent advances in machine learning, particularly in the application of convolutional neural 

networks, present promising alternatives to traditional methods. 
Data-driven machine learning models have begun to shift the paradigm in various domains, 

showing superior performance in fields such as image analysis [15,16]. In the context of moni-
toring the condition of the railway track, initiatives have explored the use of cameras on board 
and binary classification techniques to differentiate between good and bad track conditions [17–
20]. However, the adoption of machine learning in this domain is not without its challenges. 
Despite their promise, these approaches face their own set of limitations, including computational 
demands and the lack of severity assessment in track irregularities [17]. 

Research by Hao et al. [4] presents a notable advancement, which highlights the potential of 
deep learning approaches to predict vertical track irregularities with a high degree of precision. 
However, this method does not address lateral irregularities. Similarly, the use of autoencoders 
to compress irregularity data presents innovative solutions, but the evaluation is limited to simu-
lated environments and again to specific types of irregularities [21]. 

Exploring data-driven methods for road quality monitoring has also yielded encouraging re-
sults, suggesting that similar approaches could be beneficial for the maintenance of railway 
tracks [22]. 

2. Vehicle Dynamics and Problem Formulation 
The following subsections will outline the vehicle description and formally set up the problem 

to be solved. We need to first understand the vehicle dynamics to see that we can formulate the 
problem as an inverse problem. 

2.1. Vehicle Dynamics 
The behavior of a railway vehicle on a track is governed by interactions between various 

components, with the influences of the track geometry being the main outside factor. 
Railway Vehicle Model: We consider a typical four-axle railway vehicle, consisting of: 

1. Car body. 
2. Two bogies (front and rear). 
3. Four wheelsets (two per bogie). 

https://www.hos.pub/
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These components are interconnected through primary and secondary suspension systems, 
which play a critical role in determining the vehicle’s response to track irregularities. See Figure 1 
for a depiction of the suspension system in a Cooperrider’s boogie. 

 
(A) 

 
(B) 

Figure 1. Front-view (A) and top-view (B) of the primary and secondary suspension system in a 
Cooperrider’s boogie model. Shown to exemplify a suspension system, and how the components can be 
connected. Figures adapted from [23]. 

The vehicle’s dynamic response can be described by six degrees of freedom for each rigid body: 

1. Longitudinal translation (𝑥𝑥). 
2. Lateral translation (𝑦𝑦). 
3. Vertical translation (𝑧𝑧). 
4. Roll rotation (𝜙𝜙). 
5. Pitch rotation (𝜒𝜒). 
6. Yaw rotation (𝜓𝜓). 

In the data, we will not measure the angles directly, but rather opt for, e.g., having two sensors 
on a wheelset (one at each end), which measure the longitudinal, lateral, and vertical accelera-
tions. From these, we could compute the accelerations for the angles, but there should be no 
benefit from doing so from the machine learning perspective. 

Track irregularities manifest in four primary forms: 

1. Vertical profile (longitudinal level). 
2. Lateral alignment. 
3. Cross level (superelevation). 
4. Gauge variation. 

These irregularities excite various modes of vehicle motion, with complex interactions between 
different wavelengths and the vehicle’s natural frequencies. And the vehicle’s response to track 
irregularities can be conceptualized as a series of forced vibrations. The frequency and amplitude 
of these vibrations depend on: 

https://www.hos.pub/
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1. The wavelength and amplitude of track irregularities. 
2. Vehicle speed. 
3. Vehicle suspension characteristics. 
4. Mass and inertia properties of vehicle components. 

Several non-linear effects complicate the relationship between track irregularities and vehicle 
dynamics with the primary one being the wheel-rail contact mechanics, including flange contact. 
The non-linearities are more pronounced in the lateral direction, which makes lateral irregularity 
prediction more challenging than vertical irregularity prediction [1,24,25]. 

One could use the physical understanding of the system to enhance the predictive power of 
the machine learning models [26–30]. However, we leave this for future work, as the physical 
information needs to be formulated for each vehicle type. 

2.2. Problem Formulation 
The challenge of predicting railway track irregularities from vehicle dynamics can be formu-

lated as an inverse problem. Given a set of dynamic responses from sensors installed on an in-
service railway vehicle, we aim to infer the underlying track geometry irregularities that caused 
these responses. 

Mathematically, we can express this as: 

𝑦𝑦 = 𝐻𝐻(𝑥𝑥) + ϵ, (1) 

where: 
⁃ 𝑥𝑥 represents the track irregularities, 
⁃ 𝑦𝑦 represents the measured vehicle dynamics, 
⁃ 𝐻𝐻 is the complex, non-linear transfer function that maps track irregularities to vehicle 

dynamics, and 
⁃ ϵ represents measurement noise and model uncertainties. 

Our goal is to approximate 𝐻𝐻−1, the inverse of 𝐻𝐻, using a convolutional neural network. 
This inverse function should map the observed dynamics 𝑦𝑦 back to the track irregularities 𝑥𝑥 
with high accuracy. 

The problem is complicated by several factors: 

1. Non-linearity: The relationship between track irregularities and vehicle dynamics is 
highly non-linear, especially for lateral dynamics. 

2. Multi-dimensionality: Both input (dynamics) and output (irregularities) are multi-dimen-
sional time series data. 

3. Different frequency domains: Track irregularities are categorized into three wavelength 
bands (D1, D2, D3), each potentially requiring different modeling approaches. 

4. Uncertainty quantification: Beyond point predictions, we need to quantify the uncertainty 
in our estimates to support risk-based decision-making. 

3. Materials and Methods 
This section outlines the methodology employed to predict railway track irregularities using 

CNNs complemented by conformal prediction techniques to estimate the uncertainties of these 
predictions. The section also includes a bit of background for these methods, how the CNN is 
designed specifically for the task at hand and training the model. In addition, we will look at the 
data used for this project. 

3.1. Data Collection and Preprocessing 
Our dataset comprises high-fidelity sensor readings from an ETR500 high-speed train, cap-

turing various dynamic responses under operating conditions. The data includes: 

1. Input features: 38 time series of acceleration measurements from various locations on the 
train (axle boxes, bogies, car body) in lateral and vertical directions, and vehicle velocity 
and track curvature. Cf. Table A1. 

2. Output features: 12 time series of track irregularities (lateral and vertical for left and right 
rails, in three wavelength domains D1, D2, D3). Cf. Table 1. 

3. Auxiliary data: Vehicle speed and track curvature. 

https://www.hos.pub/
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The data was collected over approximately 140 km of track, sampled at ≈1000 Hz, resulting 
in 287,827 observations. The ETR500 high-speed train only measures the vehicle dynamics, and 
another inspection vehicle collected the track geometry readings. 

Table 1. Features in a sample of geometry dataset—With labels used in this project. 

Label Unit Description Notes 

Position km Position along the track  

Lateral left D1 mm Lateral irregularities of the left  
and right rail in the D1  
wavelength domain 

D1 is the first  
frequency band  
with wavelengths  
in [3 m, 25 m] 

Lateral right D1 mm 

Vertical left D1 mm Vertical irregularities of the left  
and right rails in the D1  
wavelength domain Vertical right D1 mm 

Lateral left D2 mm Lateral irregularities of the left  
and right rail in the D2  
wavelength domain 

D2 is the second  
frequency band  
with wavelengths  
in [25 m, 70 m] 

Lateral right D2 mm 

Vertical left D2 mm Vertical irregularities of the left  
and right rails in the D2  
wavelength domain Vertical right D2 mm 

Lateral left D3 mm Lateral irregularities of the left  
and right rail in the D3  
wavelength domain 

D3 is the third  
frequency band  
with wavelengths  
in [70 m, 200 m] 

Lateral right D3 mm 

Vertical left D3 mm Vertical irregularities of the left  
and right rails in the D3  
wavelength domain Vertical right D3 mm 

The preprocessing steps involved the removal of outliers and normalization and segmentation 
to ensure compatibility with the CNN architecture. This preprocessing facilitated the transfor-
mation of raw sensor data into a structured format conducive to machine learning models. 

The data were collected using multiple accelerometers located at various points on the rail-
way vehicle; see Figure 2 for locations. The input data consists of a time series with measurements 
from each accelerometer. The output data consists of the irregularities of the track in the lateral 
and vertical directions for the left and right rails. These have further been split into three fre-
quency domains, D1, D2, and D3, with wavelengths of [3 m, 25 m], [25 m, 70 m], and [70 m, 
200 m], respectively, thus giving 12 output series. The features in the track geometry (output) 
data can be seen in Table 1. 

 
Figure 2. Data measurement locations of the vehicle dynamics. The red arrows indicate the placement of 
the accelerometers on the axle boxes, bogies, and car body. 

An outlier analysis found that five of the accelerometers had regions where they were faulty. 
We zeroed the data from the faulty sensor data in these regions but kept the data from the non-
faulty sensors as they were. The outliers were found by plotting the data and noticing that some 
sensors had segments with values that were constant and many times larger than all other values 
collected by the same sensor. 

https://www.hos.pub/
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The data were collected with a sampling frequency of ≈1000 Hz, but as the railway vehicle 
moved at a non-constant speed, this gave a non-uniform sampling in space. We, therefore, inter-
polated to have a constant sample spacing of 0.167 m. 

We then split the data into training and testing regions. The data have 287,827 observations, 
and the 1st to 23,827th, the 94,001st to 117,827th, and the 188,001st to 211,827th samples are 
used as the test data. The training data consists of the remaining data. 

These regions are shown in Figure 3. The training data are further divided into training and 
validation segments by splitting it into nine regions and using one for validation and the remain-
ing eight for training. Six of the nine regions are used for validation; a separate model is trained 
for each of the six validation regions, and the results are the mean across the six models. 

 
Figure 3. Training and testing regions of the data. During the training of the models, the training data is 
divided into training and validation segments by splitting it into nine regions and using one for validation 
and the remaining eight for training. 

To summarize, our data processing is as follows: 

1. Data measurements: Measure vehicle components’ accelerations and rails’ irregularities. 
2. Outlier Detection and Handling: Identify regions with faulty sensor data in five input 

channels. These faulty readings were zeroed out rather than removed to maintain the 
time series structure. 

3. Interpolation: Ensure consistent spatial sampling by interpolating the data to a constant 
spacing of 0.167 m along the track. This is done using cubic spline interpolation. This 
step was necessary due to variations in train speed during data collection. 

4. Normalization: Input features were standardized to zero mean and unit variance to facil-
itate model training. 

5. Segmentation: The data was split into training (70%), validation (10%), and test (20%) 
sets. The split was done spatially to maintain the temporal structure of the data: 
(a) Test set: the 1–23,827, 94,001–117,827, and the 188,001–211,827 samples. 
(b) Training and validation: Remaining data, which were further divided into nine seg-

ments for cross-validation. 
6. Windowing: For the CNN input, we use each of the nine segments as a sample with a 

batch size of one for each input channel. The output is cropped to remove the first and 
last samples the models do not make predictions for. 

This preprocessing pipeline ensures that our data is clean, consistently formatted, and struc-
tured appropriately for our CNN model while preserving the spatial and temporal relationships 
crucial for accurate irregularity prediction. 

3.2. Convolutional Neural Network Architecture 
The CNN architecture was designed to process time-series data, capturing spatial and 
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temporal dependencies inherent in the train’s dynamic responses. The model comprises multiple 
convolutional layers, each followed by pooling layers to reduce dimensionality and enhance fea-
ture extraction. Dropout layers were incorporated to mitigate overfitting, ensuring the model’s 
generalizability across different track conditions. The model consists of batch normalization of 
the input and then three hidden CNN layers using batch normalization, the Exponential Linear 
Unit (ELU) activation function, and dropout of 60%, with a final CNN layer to obtain the output 
[31–33]. The first convolutional layer uses very large kernels to ensure that features with 300-m 
wavelengths can be captured. This is relevant as the irregularities can exhibit wavelengths up to 
200 m. A diagram of the final network has been shown in Figure 4. 

Hyperparameters, including the learning rate, number of convolutional layers, kernel size, 
and dropout rate, were tuned using a combination of grid search and cross-validation to find the 
optimal model configuration by comparing the validation losses. We employed an iterative ap-
proach for the grid search, tuning only one or a few variables simultaneously. 

 
Figure 4. Depiction of the CNN after tuning the hyperparameters. The parameters for convolution layers 
(Conv.) are given by a tuple with (kernel size, stride, # of channels, and padding). 

3.3. Conformal Prediction Framework 
To quantify the uncertainty of CNN predictions, we applied conformal prediction methods. 

These methods use residuals from the training dataset to construct prediction intervals for new 
observations. Different variants of conformal prediction, Naïve, Holdout, and Cross-Validation, 
were evaluated to determine the most effective approach for this application. The Cross-Valida-
tion variant can further be split into three versions, CV, CV+, and CV-minmax [34–37]. 

The best intervals were produced by CV+ and CV-minmax, so the results will include only 
these. These methods have assumption-free theoretical guarantees that the 𝛼𝛼 level interval con-
tains > 1 − 𝛼𝛼 of the samples [35]. For our results, we will use 𝛼𝛼 = 0.05 intervals. The focus on 
CV+ and CV-minmax is due to the better theoretical guarantees of these methods [35]. 

3.4. Evaluation Metrics 
The performance of the CNN model and the effectiveness of the conformal prediction inter-

vals were evaluated using a few metrics. For CNN, the metrics were the mean and maximum of 
unsigned errors and the compute time. For conformal prediction, the focus was on the accuracy 
of the prediction intervals measured through the coverage probability (how often the true values 
were inside the interval) and the width of the interval assessed through the mean and maximum 
width. 

4. Results 
This section will present the results of this project for the best CNN model constructed, the 

use of conformal predictions, and, lastly, the compute time required to evaluate the model and 
produce prediction intervals. 

4.1. CNN Predictions 
The CNN model displayed proficiency in predicting track irregularities from dynamic re-

sponses of in-service railway vehicles. The model, after rigorous tuning, achieved a satisfactory 
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ME by beating the “satisfying” benchmark for the ME. This significant achievement is depicted 
in Figure 5, illustrating the training and validation mean errors across epochs, where the model’s 
performance is notably highlighted by its capacity to maintain errors below the “satisfying” 
benchmark level. 

 
Figure 5. The training and validation mean and maximum unsigned error during training for the best-
performing CNN model. The black dashed lines are the “satisfying” benchmark levels. We can see that the 
model gets a satisfactory mean unsigned error, but the maximum is still off. 

Architecture and hyperparameter optimization played a pivotal role in enhancing the 
model’s accuracy. The final CNN model utilized a sophisticated arrangement of convolutional 
layers coupled with dropout regularization and batch normalization techniques. These elements 
collectively contributed to a robust model capable of discerning the intricate patterns associated 
with track irregularities from the vast and complex data derived from railway dynamics. 

An extensive error analysis was conducted to dive into the predictive capabilities of the model 
and areas of improvement. This analysis was crucial in understanding the nuances of the model’s 
performance, including the instances where it deviated from expected outcomes. Despite achiev-
ing high accuracy, the model faced challenges with maximum errors, especially in the validation 
data, prompting a detailed examination of error characteristics to identify potential model en-
hancements. The result of this analysis showed that the model makes the largest errors in regions 
with faulty sensor data. This is highlighted in Table 2, which shows key statistics for the model 
evaluated on the test data. The test data did not contain faulty sensor data. From the table, we 
see that the model also gets a satisfactory mean, but not a satisfactory maximum, on the test data. 
However, the aggregated maximum unsigned error is much smaller in the test data compared to 
the validation data errors seen in Figure 5. 

Additionally, the model beats the state-of-the-art results from [4] for short wavelengths and 
the aggregated mean unsigned errors. However, the model falls short of the 0.1- and 0.5-mm 
benchmarks for, respectively, the mean and maximum of unsigned errors. 

Thus, to further improve the model, the focus should be on the data used to train the model. 
This might then eliminate the issues with missing sensor data. 

4.2. Conformal Prediction 
Integration of conformal prediction methods notably enhanced the predictive capabilities of the 

CNN model. The CV+ and CV-minmax methods were used to calculate the prediction intervals 
for the test data, which would improve the confidence in the model outputs for new predictions.  
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Table 2. Mean and maximum of the unsigned test errors for each of the 12 output features. Values high-
lighted in red and in bold are those that exceed satisfactory levels. Recall that D1, D2, and D3 correspond 
to wavelengths of [3 m, 25 m], [25 m, 70 m], and [70 m, 200 m], respectively. From this, the mean unsigned 
errors for the three wavelength regions are 0.205 mm, 0.248 mm, and 0.486 mm, respectively. 

 Mean [mm] Maximum [mm] 
Lateral left D1 0.14 2.54 
Lateral right D1 0.13 2.62 
Vertical left D1 0.27 2.23 
Vertical right D1 0.28 2.56 
Lateral left D2 0.2 3.55 
Lateral right D2 0.18 3.49 
Vertical left D2 0.3 2.28 
Vertical right D2 0.31 2.63 
Lateral left D3 0.35 7.33 
Lateral right D3 0.33 7.61 
Vertical left D3 0.63 6.58 
Vertical right D3 0.64 6.19 
Aggregates 0.31 7.61 

The predictions are made as a mean aggregate of the six model instances trained for each vali-
dation segment. As depicted in Figure 6, the CV+ and CV-minmax methods achieved high true 
value coverage rates, illustrating their effectiveness in encompassing data variability. The CV+ 
intervals are slightly narrower than those for CV-minmax but are overall very similar. 

Table 3 presents the aggregate statistics for the 𝛼𝛼 = 0.05 intervals. It reveals that although 
CV-minmax offers higher coverage at 97.18% compared to CV+’s 95.76%, it produces wider 
intervals on average (2.33 mm for CV-minmax versus 1.78 mm for CV+). Notably, as will be 
shown later, the CV-minmax method’s prediction intervals are computed faster than those of 
CV+, an advantage for real-time applications. 

 
Figure 6. Comparison of prediction intervals from CV+ and CV-minmax methods against the true values 
of track irregularities for the vertical D3 (long wavelengths) irregularities of the left rail. We see that the 
intervals often capture the true value, but there are instances, where they fail. 

Table 3. Aggregate statistics for conformal prediction intervals using the CV+ and CV-minmax methods. 
CV+ produces narrower intervals, but they have a slightly lower coverage. 

Measure CV+ CV-minmax 
True value coverage (%) 95.76 97.18 
Average interval width (mm) 1.78 2.33 
Maximum interval width (mm) 4.54 5.25 
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4.3. Compute Time 
A crucial aspect of the CNN model’s design was its ability to process and make predictions at 

a rate that exceeds the operational speeds of high-speed railway vehicles, which can reach speeds 
over 300 km per hour. 

The CNN model could process 35.30 km of test data in 60.72 seconds using a GTX 970. 
Thus, the model can process track data at a rate of 2093 km per hour. Meanwhile, for conformal 
predictions, the CV-minmax and CV+ methods require 0.12 seconds and 12 minutes, respec-
tively, to process the test data. This means they can process track data at rates of over 1,000,000 
km and 176.5 km per hour, respectively. 

Thus, the CV+ method cannot process sufficiently fast. However, the CNN model and CV-
minmax demonstrated exceptional efficiency, capable of evaluating substantial lengths of track 
data within a constrained timeframe, thereby ensuring its applicability in real-time monitoring 
systems. 

We propose a CNN-based model with uncertainty quantified via conformal predictions as a 
solution for continuous real-time monitoring of railway track conditions. 

5. Conclusion 
This research ventured into the domain of using data-driven machine learning methods, with 

a focus on convolutional neural networks and conformal prediction, to predict railway track ir-
regularities from the observed dynamics of in-service railway vehicles. The core achievement was 
the development of a predictive model that not only delivered satisfactory accuracy in detecting 
track irregularities but also incorporated conformal prediction to estimate the uncertainty of 
these predictions reliably. Satisfactory results are set as a mean unsigned error of 0.35 mm based 
on state-of-the-art results from related work. 

Our model has a mean unsigned error of 0.31 mm on the test set, thus improving the state-
of-the-art results of [4]. 

Interestingly, the conformal prediction methodology achieved a high coverage of 97.18% of 
the true values, with prediction intervals of an average width of 2.33 mm, thus ensuring a robust 
and reliable predictive framework. 

However, it was noted that, while the prediction coverage was impressively high, the width 
of the intervals, though relatively small, indicates room for optimization to refine the precision 
further. These intervals were derived using the CV-minmax method, highlighting the potential 
for real-time application of this approach, given its ability to evaluate more than 1M km of track 
data per hour. Additionally, the CNN model could process track data at a rate of more than 2000 
km per hour. This efficiency underscores the feasibility of deploying this methodology in real-
world settings, where it can serve as a cornerstone for continuous real-time monitoring of railway 
track conditions using in-service high-speed vehicles. 

The journey to improve the accuracy and reliability of track irregularity detection through 
machine learning is far from over. Future endeavors can pivot around several key areas to push 
the boundaries of current achievements. Primarily, addressing the identified data issues will be 
crucial. This includes refining sensor data quality by removing or correcting data from faulty 
sensors and handling outliers more effectively. The model could, for instance, be made more 
robust so that it can allow for faulty sensors. 

Further exploration of vehicle modeling offers a promising avenue for advancement. Transi-
tioning the codebase to Julia has opened up new possibilities for using scientific computing meth-
ods. For example, delving into the domain of scientific machine learning, specifically through the 
lens of Neural Ordinary Differential Equations (NODEs), presents an exciting frontier. This ap-
proach could fundamentally change the way we model vehicle dynamics by integrating data-driven 
insights directly into the differential equations governing these dynamics. Future research could 
analyze how the kernels in the model learn to predict the vertical vs. the lateral irregularities. 

We tried using transfer learning to simulate vehicle dynamics and pre-training the model on 
these simulated data. However, this did not produce the expected benefits in this study, suggest-
ing a potential misalignment in data formatting or a lack of representation in the ODE system. 
Future research could aim to refine these aspects, potentially leading to breakthroughs in model 
performance and generalizability. Similarly, future work could try using physics-informed neural 
networks (PINNs) to enhance the model by incorporating physical laws directly into the learning 
process. 
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In sum, the groundwork laid by this project not only contributes to the current body of 
knowledge but also charted a course for future research to explore uncharted territories in railway 
track maintenance and safety through the lens of advanced machine learning techniques. 
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Appendix A 

Table A1. Features in a sample of dynamics dataset—With provided labels and labels used in this project. 
We use all except the position as the input features. 

ID Label Unit Description 
0 Position km Position along the track 
1 Velocity km/h Velocity of the railway vehicle 
2 AccB1Y m/s2 Lateral acceleration of axle box 1 
3 AccB1Z m/s2 Vertical acceleration of axle box 1 
4 AccCR1Y m/s2 Lateral acceleration of bogie A at axle box 1 
5 AccCR1Z m/s2 Vertical acceleration of bogie A at axle box 1 
6 AccB2Y m/s2 Lateral acceleration of axle box 2 
7 AccB2Z m/s2 Vertical acceleration of axle box 2 
8 AccCR2Y m/s2 Lateral acceleration of bogie A at axle box 2 
9 AccCR2Z m/s2 Vertical acceleration of bogie A at axle box 2 
10 AccB3Y m/s2 Lateral acceleration of axle box 3 
11 AccB3Z m/s2 Vertical acceleration of axle box 3 
12 AccCR3Y m/s2 Lateral acceleration of bogie A at axle box 3 
13 AccCR3Z m/s2 Vertical acceleration of bogie A at axle box 3 
14 AccB4Y m/s2 Lateral acceleration of axle box 4 
15 AccB4Z m/s2 Vertical acceleration of axle box 4 
16 AccCR4Y m/s2 Lateral acceleration of bogie A at axle box 4 
17 AccCR4Z m/s2 Vertical acceleration of bogie A at axle box 4 
18 AccB5Y m/s2 Lateral acceleration of axle box 5 
19 AccB5Z m/s2 Vertical acceleration of axle box 5 
20 AccCR5Y m/s2 Lateral acceleration of bogie B at axle box 5 
21 AccCR5Z m/s2 Vertical acceleration of bogie B at axle box 5 
22 AccB6Y m/s2 Lateral acceleration of axle box 6 
23 AccB6Z m/s2 Vertical acceleration of axle box 6 
24 AccCR6Y m/s2 Lateral acceleration of bogie B at axle box 6 
25 AccCR6Z m/s2 Vertical acceleration of bogie B at axle box 6 
26 AccB7Y m/s2 Lateral acceleration of axle box 7 
27 AccB7Z m/s2 Vertical acceleration of axle box 7 
28 AccCR7Y m/s2 Lateral acceleration of bogie B at axle box 7 
29 AccCR7Z m/s2 Vertical acceleration of bogie B at axle box 7 
30 AccB8Y m/s2 Lateral acceleration of axle box 8 
31 AccB8Z m/s2 Vertical acceleration of axle box 8 
32 AccCR8Y m/s2 Lateral acceleration of bogie B at axle box 8 
33 AccCR8Z m/s2 Vertical acceleration of bogie B at axle box 8 
34 AccCSAY m/s2 Lateral acceleration of car body at bogie A 
35 AccCSAZ m/s2 Vertical acceleration of car body at bogie A 
36 AccCSBY m/s2 Lateral acceleration of car body at bogie B 
37 AccCSBZ m/s2 Vertical acceleration of car body at bogie B 
38 Curvatura 1/m Curvature of the circle the track is forming 
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